Borophene-Based Nanomaterials for Energy and Biomedical Applications: Progress, Challenges, and Outlook
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Since the first successful synthesis of borophene in 2015, this atomically thin boron allotrope has attracted extensive attention due to its polymorphic structures, metallic conductivity, and outstanding mechanical flexibility. As a new member of the two-dimensional (2D) materials family, borophene exhibits a unique triangular lattice with tunable hexagonal vacancies, leading to rich structural diversity and anisotropic physical properties. Recent breakthroughs in synthesis—particularly molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and solvothermal-assisted liquid-phase exfoliation (S-LPE)—have significantly expanded the accessible structural phases and improved control over film quality and stability. Meanwhile, borophene’s distinctive combination of structural and electronic characteristics has enabled its rapid development in both energy and biomedical applications. In energy storage, borophene serves as a promising anode material for lithium/sodium-ion batteries and a lightweight medium for hydrogen storage and supercapacitors, owing to its metallic conductivity, high surface charge density, and large adsorption capacity. In biomedicine, borophene-based nanoplatforms exhibit excellent photothermal conversion efficiency, enabling multifunctional roles in cancer diagnosis and therapy. Despite these advances, several challenges—such as environmental instability, oxidation susceptibility, and limited scalable synthesis—continue to restrict practical implementation. Future progress will depend on chemical functionalization, surface passivation, and machine-learning-assisted materials design to achieve oxidation-resistant, large-area, and biocompatible borophene derivatives. This review summarizes recent advances in borophene synthesis, structural engineering, and multifunctional applications, while outlining key scientific challenges and future opportunities for the realization of borophene-based materials in next-generation energy and biomedical systems.