Toward Resilience in Broadacre Agriculture: A Methodological Review of Remote Sensing in Crop Productivity, Phenology, and Environmental Stress Detection

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Large-scale rainfed cropping systems (broadacre agriculture) face intensifying climate and resource stresses that undermine yield stability and farm livelihoods. Remote sensing (RS) offers critical tools for improving resilience by monitoring crop performance—productivity, phenology, and environmental stress—across large areas and timeframes. This review aims to synthesize methodological advances over the past two decades in applying RS for broadacre crop monitoring and to identify key challenges and integration opportunities. Peer-reviewed studies across diverse crops and regions were systematically examined to evaluate the strengths, limitations, and emerging trends across the three RS application themes. The review finds that (1) RS enables spatially explicit yield estimation from regional to paddock scales, with vegetation indices (VIs) and phenology-adjusted metrics closely correlated with yield. (2) Time-series analyses of RS data effectively capture phenological transitions critical for forecasting, supported by advances in curve fitting, sensor fusion, and machine learning. (3) Thermal and multispectral indices support early detection of abiotic (drought, heat, salinity) and biotic (pests, disease) stresses, though specificity remains limited. Across themes, methodological silos and sensor integration barriers hinder holistic application. Emerging approaches—such as multi-sensor/scale fusion, RS–crop model data assimilation, and operational and big data integration—provide promising pathways toward resilience-focused decision support. Future research should define quantifiable resilience metrics and cross-theme predictive integration to guide climate adaptation.

Article activity feed