Enhancing Hydrological Model Calibration for Flood Prediction in Dam-Regulated Basins with Satellite-Derived Reservoir Dynamics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The construction and operation of reservoirs have made hydrological processes complex, posing challenges to flood modeling. While many hydrological models have incorporated reservoir operation schemes to improve discharge estimation, the influence of reservoir representation on model calibration has not been sufficiently evaluated—an issue that fundamentally affects the spatial reliability of distributed modeling. Additionally, the limited availability of reservoir regulation data impedes dam-inclusive flood simulation. To overcome these limitations, this study proposes a synergistic modeling framework for data-scarce dammed basins. It integrates a satellite-based reservoir operation scheme into a distributed hydrological model and incorporates reservoir processes into the model calibration procedure. The framework was tested using the coupled version of the DRIVE flood model (DRIVE-Dam) in the Nandu River Basin, southern China. Two calibration configurations, with and without dam operation (CWD vs. CWOD), were compared. Results show that reservoir dynamics were effectively reconstructed by combining satellite altimetry with FABDEM topography, successfully supporting the development of the reservoir scheme. Multi-site comparisons indicate that, while CWD slightly improved streamflow estimation (NSE and KGE > 0.75, similar to CWOD) on the calibrated outlet gauge, it enhanced basin-internal process representation, as evidenced by the superior peak discharge and flood event capture with reduced bias, boosting flood detection probability from 0.54 to 0.60 and reducing false alarms from 0.28 to 0.15. The improvements stem from refined parameterization enabled by a physically complete model structure. In contrast, CWOD leads to subdued flood impulses and prolonged recession due to spurious parameters that distort baseflow and runoff response. The proposed methodology provides a practical reference for flood forecasting in dam-regulated basins, demonstrating that reservoir representation enhances model parameterization and underscoring the strong potential of satellite observations for hydrological modeling in data-limited regions.

Article activity feed