Enabling Sustainable After-Market Aircraft Electrification: Aerodynamic Impact of High-Performance Battery Cooling Ports
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The transition to electric aircraft for zero-emission transport requires integrating thermal management systems for high-performance batteries without incurring significant weight, balance, or aerodynamic penalties. This study focuses on the aerodynamic penalties associated with air-cooling systems that can compound the presently unavoidable reduction in endurance imposed by current battery energy density limitations. Building on previous research into battery installation layouts and internal cooling flows, this study is the first to investigate the lift-to-drag (L/D) optimisation for the multiple wing-mounted inlets and outlets necessary for air-cooling batteries in the wing of an electrified aircraft. Wing-leading-edge inlets and NACA (National Advisory Committee for Aeronautics) ducts were analysed by systematically varying their layout, number, and dimensions. The analysis evaluated their effects on the wing’s lift, drag, and moment to maximise the L/D. Multiple highly efficient experimental test designs were developed to screen for the main factors to identify the best inlet and outlet configuration, resulting in 66 different Computational Fluid Dynamics (CFD) simulations in ANSYS Fluent. Following this, three CFD verifications cases of the best configuration were conducted to verify the cooling effect by combining both internal and external flow simulations with heat generation. Compared to the baseline wing of the carbon combustion aircraft, the best configuration caused a 1.75% reduction in L/D, range, and endurance. While the aerodynamic penalty is now minimised, the internal battery pack layout requires further optimisation to re-establish uniform cooling across the battery pack. Designers may still be able to separate the CFD analysis of the internal and external flow regimes with idealised inlets and outlets; however, more whole-field CFD iterations are needed to guide such subdivision to a viable and safe design for wing-mounted batteries. Further, the margins are such that wing-mounted electrification warrants careful instrumented validation in an aircraft. These findings provide crucial design guidance for sustainable aviation, particularly to enable after-market electrification projects.