Citrus Genotype Modulates Rhizosphere Microbiome Structure and Function Under Drought Stress

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drought stress substantially impairs citrus growth and alters the rhizosphere microbial composition; however, the role of these microbial communities in plant drought tolerance remains poorly understood. This study investigated the rhizosphere microbial structure, soil enzymatic activities, and physicochemical properties of drought-tolerant (DR) and drought-sensitive (DS) citrus varieties under drought stress conditions. High-throughput sequencing revealed that drought significantly altered microbial community composition, reducing the bacterial Shannon diversity by about 15% and enriching Gram-negative, stress-tolerant, and potentially pathogenic bacteria, as well as plant pathogenic fungi (upregulated 25.4% in DS), while reducing undefined saprotrophs (downregulated from 76.2 to 54.0% in DS). Notably, the DR variety exhibited a more stable and complex bacterial network, with 23.5% more edges and a higher proportion of positive correlations (54.3%), higher enrichment of beneficial fungi like Penicillium and Trichoderma, and unique recruitment of mycorrhizal fungi (up to 10.2%), which were nearly absent in DS. Furthermore, soil catalase and urease activities decreased under drought stress conditions. In contrast, acid phosphatase activity increased by up to 40% in DR. Correlation analyses indicated that these microbial shifts were closely associated with changes in soil nutrient availability. Our findings demonstrated that the drought-tolerant citrus variety modulates its rhizosphere microbiome towards a more cooperative and resilient state, highlighting the critical role of host-specific microbial recruitment in enhancing plant adaptation to drought stress for sustainable agriculture.

Article activity feed