Stochastic Model for the Internal Transfer Kinetics of Cargo in Two-Compartment Carriers

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Lipid vesicles and related nanocarriers often contain two compartments, such as the inner and outer leaflets of a bilayer membrane between which amphipathic molecules can migrate. We develop a stochastic model for describing the transfer kinetics of cargo between the two compartments in an ensemble of carriers, neglecting inter-carrier exchange to focus exclusively on intra-carrier redistribution. Starting from a set of rate equations, we examine the Gaussian regime in the limit of low cargo occupation where Gaussian and Poissonian statistics overlap. We derive a Fokker–Planck equation that we solve analytically for any initial cargo distribution among the carriers. Moments of the predicted distributions and examples, including a comparison between numerical solutions of the rate equations and the analytic solutions of the Fokker–Planck equation, are presented and discussed, thereby establishing a theoretical foundation to study coupled intra- and inter-carrier transport processes in mobile nanocarrier systems.

Article activity feed