Why ROC-AUC Is Misleading for Highly Imbalanced Data: In-Depth Evaluation of MCC, F2-score, H-measure, and AUC-based Metrics across Diverse Classifiers

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study re-evaluates ROC-AUC for binary classification under severe class imbalance (<3% positives). Despite its widespread use, ROC-AUC can mask operationally salient differences among classifiers when the costs of false positives and false negatives are asymmetric. Using three benchmarks, credit-card fraud detection (0.17%), yeast protein localization (1.35%), and ozone level detection (2.9%), we compare ROC-AUC with Matthews Correlation Coefficient, F2-score, H-measure, and PR-AUC. Our empirical analyses span 20 classifier–sampler configurations per dataset, combined with four classifiers (Logistic Regression, Random Forest, XGBoost, and CatBoost) and four oversampling methods plus a no-resampling baseline (no resampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, ADASYN). ROC-AUC exhibits pronounced ceiling effects, yielding high scores even for underperforming models. In contrast, MCC and F2 align more closely with deployment-relevant costs and achieve the highest Kendall’s τ rank concordance across datasets; PR-AUC provides threshold-independent ranking, and H-measure integrates cost sensitivity. We quantify uncertainty and differences using stratified bootstrap confidence intervals, DeLong’s test for ROC-AUC, and Friedman–Nemenyi critical-difference diagrams, which collectively underscore the limited discriminative value of ROC-AUC in rare-event settings. The findings recommend a shift to a multi-metric evaluation framework: ROC-AUC should not be used as the primary metric in ultra-imbalanced settings; instead, MCC and F₂ are recommended as primary indicators, supplemented by PR-AUC and H-measure where ranking granularity and principled cost integration are required. This evidence encourages researchers and practitioners to move beyond sole reliance on ROC-AUC when evaluating classifiers in highly imbalanced data.

Article activity feed