Application Research on General Technology for Safety Appraisal of Existing Buildings Based on Unmanned Aerial Vehicles and Stair-Climbing Robots
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Structure detection(SD) has emerged as a critical technology for ensuring the safety and longevity of infrastructure, particularly in housing and civil engineering. Traditional SD methods often rely on manual inspections, which are time-consuming, labor-intensive, and prone to human error, especially in complex environments such as dense urban settings or aging buildings with deteriorated materials. Recent advances in autonomous systems—such as Unmanned Aerial Vehicles (UAVs) and climbing robots—have shown promise in addressing these limitations by enabling efficient, real-time data collection. However, challenges persist in accurately detecting and analyzing structural defects (e.g., masonry cracks, concrete spalling) amidst cluttered backgrounds, hardware constraints, and the need for multi-scale feature integration . The integration of machine learning (ML) and deep learning (DL) has revolutionized SD by enabling automated feature extraction and robust defect recognition. For instance, RepConv architectures have been widely adopted for multi-scale object detection, while attention mechanisms like TAM (Technology Acceptance Model) have improved spatial feature fusion in complex scenes. Nevertheless, existing works often focus on singular sensing modalities (e.g., UAVs alone) or neglect the fusion of complementary data streams (e.g., ground-based robot imagery) to enhance detection accuracy. Furthermore, computational redundancy in multi-scale processing and inconsistent bounding box regression in detection frameworks remain underexplored. This study addresses these gaps by proposing a generalized safety inspection system that synergizes UAV and stair-climbing robot data. We introduce a novel multi-scale targeted feature extraction path (Rep-FasterNet TAM block) to unify automated RepConv-based feature refinement with dynamic scale fusion, reducing computational overhead while preserving critical structural details. For detection, we combine traditional methods with remote sensor fusion to mitigate feature loss during image upsampling/downsampling, supported by a structural model GIOU [Mathematical Definition:GIOU=IOU-(C-U)/C] that enhances bounding box regression through shape/scale-aware constraints and real-time analysis. By siting our work within the context of recent reviews on ML/DL for SD, we demonstrate how our hybrid approach bridges the gap between autonomous inspection hardware and AI-driven defect analysis, offering a scalable solution for large-scale housing safety assessments. In response to challenges in detecting objects accurately during housing safety assessments—including large/dense objects, complex backgrounds, and hardware limitations—we propose a generalized inspection system leveraging data from UAVs and stair-climbing robots. To address multi-scale feature extraction inefficiencies, we design a Rep-FasterNet TAM block that integrates RepConv for automated feature refinement and a multi-scale attention module to enhance spatial feature consistency. For detection, we combine dynamic scale remote feature fusion with traditional methods, supported by a structural GIOU model that improves bounding box regression through shape/scale constraints and real-time analysis. Experiments demonstrate that our system increases masonry/concrete assessment accuracy by 11.6% and 20.9%, respectively, while reducing manual drawing restoration workload by 16.54%. This validates the effectiveness of our hybrid approach in unifying autonomous inspection hardware with AI-driven analysis, offering a scalable solution for SD in housing infrastructure.