Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soil organic carbon (SOC) plays a crucial role in climate change mitigation by regulating atmospheric CO2 and maintaining ecosystem balance; however, its stability is influenced by land use in anthropized areas such as the tropical Andes. This study developed a dynamic compartmental model based on ordinary differential equations to simulate carbon fluxes among litter, humus, and microbial biomass under four land uses in the Las-Piedras River basin (Popayán, Colombia): riparian forest (RF), ecological restoration (ER), natural-regeneration (NR), and livestock (LS). The model includes two decomposition rate constants: k1, for the transformation of fresh organic matter, and k2, for the turnover of humified organic matter. It was calibrated using field data on soil physicochemical and biological properties, as well as carbon inputs and outputs. The results showed clear differences in SOC dynamics among land uses: RF had the highest SOC stocks (148.7 Mg ha−1) and microbial biomass, while LS showed the lowest values and the greatest deviation due to compaction and low residue input. The humus fraction remained the most stable pool (k2 ≈ 10−4 month−1), confirming its recalcitrant nature. Overall, the model reproduced SOC behavior accurately (MAE = 0.01–0.30 Mg ha−1) and provides a framework for improving soil carbon management in mountain ecosystems.

Article activity feed