Application of Artificial Intelligence in Control Systems: Trends, Challenges, and Opportunities

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The integration of artificial intelligence (AI) into intelligent control systems has advanced significantly, enabling improved adaptability, robustness, and performance in nonlinear and uncertain environments. This study conducts a PRISMA-2020-compliant systematic mapping of 188 peer-reviewed articles published between 2000 and 15 January 2025, identified through fully documented Boolean queries across IEEE Xplore, ScienceDirect, SpringerLink, Wiley, and Google Scholar. The screening process applied predefined inclusion–exclusion criteria, deduplication rules, and dual independent review, yielding an inter-rater agreement of κ = 0.87. The resulting synthesis reveals three dominant research directions: (i) control model strategies (36.2%), (ii) parameter optimization methods (45.2%), and (iii) adaptability mechanisms (18.6%). The most frequently adopted approaches include fuzzy logic structures, hybrid neuro-fuzzy controllers, artificial neural networks, evolutionary and swarm-based metaheuristics, model predictive control, and emerging deep reinforcement learning frameworks. Although many studies report enhanced accuracy, disturbance rejection, and energy efficiency, the analysis identifies persistent limitations, including overreliance on simulations, inconsistent reporting of hyperparameters, limited real-world validation, and heterogeneous evaluation criteria. This review consolidates current AI-enabled control technologies, compares methodological trade-offs, and highlights application-specific outcomes across renewable energy, robotics, agriculture, and industrial processes. It also delineates key research gaps related to reproducibility, scalability, computational constraints, and the need for standardized experimental benchmarks. The results aim to provide a rigorous and reproducible foundation for guiding future research and the development of next-generation intelligent control systems.

Article activity feed