What is Apoptosis and Why is it Inhibited by the Most Important Tumor Suppressor (p53)?
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Anticancer strategies targeting the DNA damage response are largely centered on a number of false hypotheses. For example, engaging apoptosis in solid tumors is universally assumed to represent a tumor suppression response. But what is “apoptosis,” really? Time-lapse microscopy and other single-cell assays have revealed that engaging apoptosis in solid tumor cells is accompanied by anastasis, the homeostatic process of cell recovery from late stages of apoptosis, even after the formation of apoptotic bodies. Furthermore, apoptotic cells secrete a variety of prosurvival factors that contribute to overall tumor repopulation. Not surprisingly, numerous clinical studies reported since the 1990s have demonstrated that increased apoptosis in solid tumors is associated with cancer aggressiveness rather than representing a favorable clinical outcome. Another major false hypothesis pertains to the role of wild-type p53 in regulating apoptosis. Several recent articles addressing the challenges that have been encountered in implementing p53-based cancer therapies assume that p53 is pro-apoptotic. This assumption, which has become an almost indisputable fact, is shocking given that by mid-2000s it was already well established that p53 serves to inhibit apoptosis through upregulating ~40 anti-apoptotic proteins. The complexity of cancer cell response to therapeutic agents is discussed herein with a focus on the significance of p53-p21WAF1 signaling in suppressing the apoptosis-anastasis tumor repopulation pathway.