Long Non-Coding RNA MALAT1 Regulates HMOX1 in Sickle Cell Disease-Associated Pulmonary Hypertension

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pulmonary hypertension (PH) causes morbidity and mortality in sickle cell disease (SCD). The release of heme during hemolysis triggers endothelial dysfunction and contributes to PH. Long non-coding RNAs (lncRNAs) may play a pivotal role in endothelial dysfunction and PH pathogenesis. This study assessed the regulatory role of the lncRNA–heme oxygenase-1 (HMOX1) axis in SCD-associated PH pathogenesis. Total RNAs were isolated from the lungs of 15–17-week-old sickle cell (SS) mice and littermate controls (AA) mice and subjected to lncRNA expression profiling using the Arrystar™ lncRNA array. Volcano plot filtering was used to screen for differentially expressed lncRNAs and mRNAs with statistical significance (fold change > 1.8, p < 0.05). A total of 3915 lncRNAs were upregulated and a total of 3545 lncRNAs were downregulated in the lungs of SS mice compared to AA mice. To validate differentially expressed lncRNAs, six upregulated lncRNAs and six downregulated lncRNAs were selected for quantitative PCR. MALAT1 expression was significantly upregulated in the lungs of SS mice and in hemin-treated human pulmonary artery endothelial cells (HPAECs), suggesting that hemolysis induces MALAT1. Functional studies revealed that MALAT1 depletion increased, while MALAT1 overexpression decreased, the endothelial dysfunction markers endothelin-1 (ET-1) and vascular cell adhesion molecule-1 (VCAM1), indicating a protective role of MALAT1 in maintaining endothelial homeostasis. In vivo, adenoviral MALAT1 overexpression attenuated PH, right ventricular hypertrophy (RVH), vascular remodeling, and reduced ET-1 and VCAM1 expression in SS mice. Given that HMOX1 protects endothelial cells during hemolysis, we observed that HMOX1 expression and activity were elevated in SS mouse lungs and hemin-treated HPAECs. HMOX1 knockdown enhanced ET-1 and VCAM1 expression, confirming its endothelial-protective function. Importantly, MALAT1 overexpression increased HMOX1 expression and activity, whereas MALAT1 knockdown reduced HMOX1 levels and mRNA stability. Collectively, these findings identify MALAT1 as a protective regulator that mitigates endothelial dysfunction, vascular remodeling, and PH in SCD, at least in part through the induction of HMOX1. These results suggest that SCD modulates the MALAT1–HMOX1 axis, and further characterization of MALAT1 function may provide new insights into SCD-associated endothelial dysfunction and PH pathogenesis, as well as identify novel therapeutic targets.

Article activity feed