From Aerosol to Signal: Advances in Biosensor Technologies for Airborne Biothreat Detection
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The growing threat of airborne biological agents necessitates rapid, sensitive, and portable detection systems to mitigate risks to public health and national security. We present a comprehensive overview of biosensor technologies developed for airborne biothreat detection, with a focus on aptamer-based electrochemical sensors. These sensors offer key advantages in portability, chemical stability, and adaptability for multiplexed detection in field settings. The urgency for real-time surveillance tools capable of identifying viral, bacterial, and toxin-based agents is discussed, particularly in the context of biodefense. Particle capture strategies are reviewed, emphasizing the role of microfluidic and aerosol sampling systems in collecting airborne agents for analysis. Key biosensor components are described, including recognition elements—such as aptamers—and transduction mechanisms like electrochemical impedance spectroscopy. EIS is highlighted for its label-free, miniaturizable, and real-time readout capabilities, making it well-suited for portable biosensors. Advances in sensing strategies for both viral and bacterial targets are explored, featuring innovations in nanoporous membrane platforms, nanomaterials, and multiplexed assay formats. Recent developments demonstrate improved sensitivity through nanopore-based signal amplification and enhanced selectivity using engineered aptamer libraries. The review concludes by addressing current limitations, including environmental stability, system integration, and the need for validation with complex real-world samples. Future directions point toward the development of fully integrated, field-deployable biosensing platforms that combine effective aerosol capture with robust and selective biosensing technologies.