Integrated Attenuation Compensation and Q-Constrained Inversion for High-Resolution Reservoir Characterization in the Ordos Basin
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Quantitative seismic characterization of transitional shale gas resources in the Da Ning–Ji Xian area, Ordos Basin, is severely hampered by complex coal-measure stratigraphy and rapid lithological variations. These challenges are critically exacerbated by severe signal attenuation from a thick loess overburden and multiple coal seams, which significantly degrades vertical resolution and undermines the reliability of quantitative interpretation. To surmount these obstacles, this study proposes an integrated, attenuation-centric inversion workflow that systematically rectifies attenuation effects as a foundational pre-conditioning step. The novelty of this study lies in establishing a systematic workflow where a data-driven, spatially variant Q-estimation is used as a crucial pre-conditioning step to guide a robust inverse Q-filtering, enabling a high-fidelity quantitative inversion for shale gas parameters in a geological setting with severe attenuation. The proposed workflow begins with a data-driven estimation of a spatially variant quality factor (Q) volume using the Local Centroid Frequency Shift (LCFS) method. This crucial Q-volume then guides a robust post-stack inverse Q-filtering process, engineered to restore high-frequency signal components and correct phase distortions, thereby substantially broadening the effective seismic bandwidth. With the seismic data now compensated for attenuation, high-resolution shale gas parameters, including Total Organic Carbon (TOC), are quantitatively derived through post-stack simultaneous inversion. Application of the workflow to field data yields an inverted volume characterized by improved structural clarity, sharply defined stratigraphic boundaries, and more robust lithological discrimination, highlighting its practical effectiveness. This attenuation-compensated inversion framework thus establishes a robust and transferable methodology for unlocking high-fidelity quantitative interpretation in geological settings previously deemed intractable due to severe seismic attenuation.