Unsteady Impact of Casing Air Injection in Reducing Aerodynamic Losses and Heat Transfer on Various Squealer Tip Geometries

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study deals with the effectiveness of casing-injection for a few squealer tip designs in a turbine stage to mitigate tip leakage penalties. Seventy-two Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations were conducted. Five factors were examined: number of injection holes, axial position, jet inclination, blowing ratio, and hole diameter. The ideal configuration demonstrated the highest aerodynamic loss reduction compared to the baseline flat tip by 2.66%. The optimal injection scheme was integrated with three tip-rim topologies: complete channel squealer, suction-side partial squealer, and pressure-side partial squealer. The channel squealer enhances the advantageous effects of injection; the injected jets produce a counter-rotating vortex pair that disturbs the tip leakage vortex core, while the cavity formed by the squealer rim captures low-momentum fluid, thus thermally protecting the tip surface. The injection combined with channel squealer had the highest stage isentropic efficiency and the lowest total-pressure loss, thereby validating the synergy between active jet momentum augmentation and passive geometric sealing. The best configuration shows a 2.87% total pressure loss decrement and a 4.49% total-to-total efficiency increment compared to the baseline design. The best configuration not only improved stage efficiency but also achieved a 43.9% decrease in the tip heat transfer coefficient.

Article activity feed