Verification of the reactingFoam Solver Through Simulating Hydrogen–Methane Turbulent Diffusion Flame, and an Overview of Flame Types and Flame Stabilization Techniques

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study aims to qualitatively and quantitatively assess the ability of the flow solver “reactingFoam” of the open-source OpenFOAM software v.2506 for a control-volume-based computational fluid dynamics (CFD) solver in treating the reacting flow problem of a popular benchmarking bluff-body-stabilized turbulent diffusion (non-premixed) flame, that is, the HM1 flame. The HM1 flame has a fuel stream composed of 50% hydrogen (H2) and 50% methane (CH4) by mole. Thus, the acronym “HM1” stands for “hydrogen–methane, with level 1 of jet speed”. This fuel stream is surrounded by a coflow of oxidizing air jet. This flame was studied experimentally at the University of Sydney. A measurement dataset of flow and chemical fields was compiled and made available freely for validating relevant computational models. We simulate the HM1 flame using the reactingFoam solver and report here various comparisons between the simulation results and the experimental results to aid in judging the feasibility of this open-source CFD solver. The computational modeling was conducted using the specialized wedge geometry, suitable for axisymmetric problems. The turbulence–chemistry interaction (TCI) was based on the Chalmers’ partially stirred reactor (CPaSR) model. The two-equation k-epsilon framework is used in modeling the small eddy scales. The four-step Jones-Lindstedt (JL) reaction mechanism is used to describe the chemical kinetics. Two meshes (coarse and fine) were attempted, and a converged (mesh-independent) solution was nearly attained. Overall, we notice good agreement with the experimental data in terms of resolved profiles of the axial velocity, mass fractions, and temperature. For either mesh resolution, the overall deviation between the computational results and the experimental results is approximately 8% (mean absolute deviation) and 10% (root mean square deviation). These are favorably low. The current study, and the presented details about the reactingFoam solver and its implementation, can be viewed as a good case study in CFD modeling of reacting flows. In addition, the information we provide about the measurement dataset, the emphasized recirculation zone, the entrainment phenomena, and the irregularity in the radial velocity can help other researchers who may use the same HM1 data.

Article activity feed