Influence of Saharan Dust Intrusions on Respiratory Medication Dispensing

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Saharan dust intrusions (SDI) are associated with poor air quality and adverse respiratory outcomes. However, their impact on real-world inhaler utilization remains insufficiently characterized. We aimed to examine the association between SDI and the dispensing of short-acting beta-agonists (SABA) and inhaled corticosteroid–long-acting beta-agonist (ICS–LABA) combinations in the Canary Islands, Spain. Methods: Pharmaceutical sales data for SABA and ICS–LABA were collected from 60 pharmacies in Santa Cruz de Tenerife (TF) and Las Palmas de Gran Canaria (GC) between June 2017 and May 2022. SDI days were identified based on daily PM₁₀ concentrations >40 µg/m³ from the regional air quality monitoring network. Linear regression models evaluated associations between drug dispensations and SDI presence, frequency, and intensity, adjusting for seasonality (winter vs summer). Results: Over 60 months, SABA sales were 14.8% lower in TF compared with GC, while ICS–LABA sales were 10.9% higher. SDI presence was associated with significantly higher ICS–LABA dispensations in both provinces (+5.7% in TF, +10.2% in GC), whereas no association was found for SABA. ICS–LABA sales correlated weakly but significantly with both SDI frequency and PM₁₀ levels. Seasonal analysis revealed stronger effects in winter, with ICS–LABA dispensa-tions increasing by 14.3% (TF) and 9.6% (GC) during SDI months. For SABA, seasonal differences were independent of SDI exposure. Conclusions: SDI in the Canary Islands are independently associated with increased dispensing of ICS–LABA maintenance therapy, particularly during winter months. Dispensing data offer a valuable population-level indicator of respiratory impact from natural airborne pollution and support the integration of environmental alerts into preventive respiratory care strategies.

Article activity feed