Targeted Endogenous Bioelectric Modulation in Autism Spectrum Disorder: Real-World Clinical Outcomes of the REAC BWO Neurodevelopment–Autism Protocol
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: Autism Spectrum Disorder (ASD) is characterized by atypical brain oscillatory dynamics and altered connectivity, impairing sensory integration, socio-communicative responsiveness, and behavioral regulation. Methods: Radio Electric Asymmetric Conveyer (REAC) technology delivers non-invasive neurobiological modulation through standardized, operator-independent protocols. The Brain Wave Optimization Neurodevelopment–Autism (BWO ND-A) protocol was designed to address oscillatory patterns frequently altered in ASD, aiming to promote network coherence and multidomain functional improvement. This retrospective pre–post single-arm study evaluated 39 children with ASD (31 males, 8 females; mean age 7.85 ± 2.90 years). All received one Neuro Postural Optimization (NPO) session to prime central nervous system adaptive capacity, followed by BWO ND-A (18 sessions, ~8 min each), administered 3–4 times daily over ~two weeks. The primary outcome was the Autism Treatment Evaluation Checklist (ATEC) total score; secondary outcomes were its four subscales. Results: Mean total ATEC decreased from 67.76 ± 16.11 to 56.25 ± 23.66 (mean change −11.51 ± 14.48; p < 0.0001; Cohen’s dz = 0.78). Clinically meaningful improvement (≥8-point reduction) occurred in 59% of participants. In 10.3% of cases, caregiver ratings indicated an apparent worsening (≥8-point increase). However, no objective deterioration or adverse effects were observed. This pattern was most likely related to a transient phase of functional re-adaptation, during which emerging changes may initially be perceived by caregivers as worsening before stabilizing into improvement. Conclusions: While these findings suggest promising short-term real-world efficacy and safety, the absence of a control group, lack of objective neurophysiological measures, and no long-term follow-up limit causal inference. Future controlled studies with neurophysiological monitoring are needed to confirm the targeted neuromodulatory action and durability of effects.