Targeted Endogenous Bioelectric Modulation in Autism Spectrum Disorder: Real-World Clinical Outcomes of the REAC BWO Neurodevelopment–Autism Protocol

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Autism Spectrum Disorder (ASD) is characterized by atypical brain oscillatory dynamics and altered connectivity, impairing sensory integration, socio-communicative responsiveness, and behavioral regulation. Methods: Radio Electric Asymmetric Conveyer (REAC) technology delivers non-invasive neurobiological modulation through standardized, operator-independent protocols. The Brain Wave Optimization Neurodevelopment–Autism (BWO ND-A) protocol was designed to address oscillatory patterns frequently altered in ASD, aiming to promote network coherence and multidomain functional improvement. This retrospective pre–post single-arm study evaluated 39 children with ASD (31 males, 8 females; mean age 7.85 ± 2.90 years). All received one Neuro Postural Optimization (NPO) session to prime central nervous system adaptive capacity, followed by BWO ND-A (18 sessions, ~8 min each), administered 3–4 times daily over ~two weeks. The primary outcome was the Autism Treatment Evaluation Checklist (ATEC) total score; secondary outcomes were its four subscales. Results: Mean total ATEC decreased from 67.76 ± 16.11 to 56.25 ± 23.66 (mean change −11.51 ± 14.48; p < 0.0001; Cohen’s dz = 0.78). Clinically meaningful improvement (≥8-point reduction) occurred in 59% of participants. In 10.3% of cases, caregiver ratings indicated an apparent worsening (≥8-point increase). However, no objective deterioration or adverse effects were observed. This pattern was most likely related to a transient phase of functional re-adaptation, during which emerging changes may initially be perceived by caregivers as worsening before stabilizing into improvement. Conclusions: While these findings suggest promising short-term real-world efficacy and safety, the absence of a control group, lack of objective neurophysiological measures, and no long-term follow-up limit causal inference. Future controlled studies with neurophysiological monitoring are needed to confirm the targeted neuromodulatory action and durability of effects.

Article activity feed