Ramanujan–Santos–Sales Hypermodular Operator Theorem and Spectral Kernels for Geometry-Adaptive Neural Operators in Anisotropic Besov Spaces
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We present Hyperbolic Symmetric Hypermodular Neural Operators (HNOS), a novel operator learning framework for solving partial differential equations (PDEs) in curved, anisotropic, and modularly structured domains. The architecture integrates three components: hyperbolic-symmetric activation kernels that adapt to non-Euclidean geometries, modular spectral smoothing informed by arithmetic regularity, and curvature-sensitive kernels based on anisotropic Besov theory. In its theoretical foundation, the Ramanujan–Santos–Sales Hypermodular Operator Theorem establishes minimax-optimal approximation rates and provides a spectral-topological interpretation through noncommutative Chern characters. These contributions unify harmonic analysis, approximation theory, and arithmetic topology into a single operator learning paradigm. In addition to theoretical advances, HNOS achieves robust empirical results. Numerical experiments on thermal diffusion problems demonstrate superior accuracy and stability compared to Fourier Neural Operators and Geo-FNO. The method consistently resolves high-frequency modes, preserves geometric fidelity in curved domains, and maintains robust convergence in anisotropic regimes. Error decay rates closely match theoretical minimax predictions, while Voronovskaya-type expansions capture the tradeoffs between bias and spectral variance observed in practice. Notably, ONHSH kernels preserve Lorentz invariance, enabling accurate modeling of relativistic PDE dynamics. Overall, ONHSH combines rigorous theoretical guarantees with practical performance improvements, making it a versatile and geometry-adaptable framework for operator learning. By connecting harmonic analysis, spectral geometry, and machine learning, this work advances both the mathematical foundations and the empirical scope of PDE-based modeling in structured, curved, and arithmetically.