AI-Assisted Lung Ultrasound for Pneumothorax: Diagnostic Accuracy Compared with CT in Emergency and Critical Care

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Pneumothorax (PTX) requires rapid recognition in emergency and critical care. Lung ultrasound (LUS) offers a fast, radiation-free alternative to computed tomography (CT), but its accuracy is limited by operator dependence. Artificial intelligence (AI) may standardize interpretation and improve performance. Methods: This retrospective single-center study included 46 patients (23 with CT-confirmed PTX and 23 controls). Sixty B-mode and M-mode frames per patient were extracted using a Clarius C3 HD3 wireless device, yielding 2,760 images. CT served as the diagnostic reference. Two transformer-based models, Vision Transformer (ViT) and DINOv2, were trained and tested under two scenarios: random frame split and patient-level split. Model performance was evaluated using accuracy, sensitivity, specificity, F1-score, and area under the ROC curve (AUC). Results: Both transformers achieved high diagnostic accuracy, with B-mode images outperforming M-mode inputs. In Scenario 1, ViT reached 99.1% accuracy, while DINOv2 achieved 97.3%. In Scenario 2, which avoided data leakage, DINOv2 performed best in the B-mode region (90% accuracy, 80% sensitivity, 100% specificity, F1-score 88.9%). ROC analysis confirmed strong discriminative ability, with AUC values of 0.973 for DINOv2 and 0.964 for ViT on B-mode images. Conclusions: AI-assisted LUS substantially improves PTX detection, with transformers—particularly DINOv2—achieving near-expert accuracy. Larger multicenter datasets are required for validation and clinical integration.

Article activity feed