Tensile Modeling PVC Gels for Electrohydraulic Actuators
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Polyvinyl chloride (PVC)-dibutyl adipate (DBA) gels are a fascinating dielectric elastomer actuator showing promise in soft robotics. When actuated with high voltages, the gel deforms towards the anode. A recent application of PVC gels in electrohydraulic actuators motivates elastic and hyperelastic constitutive relationships for tensile loading modes. PVC gels with plasticizer-to-polymer weight ratios of 2:1, 4:1, 6:1, and 8:1 w/w were evaluated. PVC gels exhibit a linear elastic region up to 25% strain. The elastic modulus decreased with increasing plasticizer content from 288.8 kPa, 56.1 kPa, 24.7 kPa, to 11 kPa. Poisson’s ratio also decreased with increasing plasticizer content from 0.42, 0.43, 0.39, to 0.35. We suggest that the decrease in polymer concentration facilitates a weakly interconnected polymer network susceptible to chain slippage that hinders the network response, thus lowering Poisson’s ratio. Our work suggests that PVC gels can be treated as isotropic and incompressible for large strains and hyperelastic modeling; however, highly plasticized gels tend to act less incompressible at small strains. The power scaling law between the elastic modulus and plasticizer weight ratio showed high agreement, making the elastic modulus deterministic for any plasticizer content. The Neo–Hookean, Mooney–Rivlin, Yeoh, Gent, Ogden, and extended tube hyperelastic constitutive models are investigated. The Yeoh model shows the highest feasibility when evaluated up to 3.5 stretch, showing a maximum normalized root-mean-square-error of 6.85%. Together, these findings establish a constitutive basis for PVC-DBA gels, incorporating small strain elasticity, large strain non-linear behavior, and network analysis while providing suggestive insight into the network structure required for accurately modeling the EPIC.