Time-Dependent Hydrothermal Synthesis of TiO2 in the Presence of Zn2+: Effects on Photoconductivity
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Titanium dioxide nanoparticles were synthesized via hydrothermal treatment of tetrabutyl titanate in sulfuric acid, with controlled reaction times (10 h and 24 h) and zinc sulfate as a modifier. XRD confirmed exclusive formation of the anatase phase, with longer reaction times promoting crystallite growth. SEM and BET analyses showed that introducing Zn during synthesis suppressed agglomeration, decreased the particle size, and modified porosity while maintaining the mesoporous nature of all samples. UV–Vis diffuse reflectance spectroscopy showed a band gap near 3.2 eV, which was unaffected by Zn content or morphology. Photoconductivity studies showed a several-orders-of-magnitude increase in conductivity under vacuum conditions, especially in samples heat-treated for 24 h, due to the generation of oxygen vacancies and Ti3+ states that prolong the carrier lifetime. In particular, the TS24Z8 sample exhibited a photoconductivity enhancement of five orders of magnitude relative to its dark conductivity and nearly 30 times higher than that of the commercial P25 benchmark. In contrast, in air, photoconductivity remained low because of strong surface recombination with adsorbed oxygen. These results emphasize the critical influence of hydrothermal duration and zinc incorporation on the defect structure and electronic response of TiO2, offering insights for improved photocatalytic and optoelectronic applications.