Ion-Type Irradiation Effect on Optical, Structural, and Morphological Properties of ZnO Thin Films

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

ZnO thin films were deposited on soda–lime glass substrates using the chemical spray pyrolysis method at a temperature of 500 °C. After the deposition, the substrates were irradiated with 10 keV H+ and Ar+ ions using a Colutron ion gun. We investigated the optical, structural, and morphological properties of the irradiated samples using Rutherford Backscattering Spectrometry, Ultraviolet and Visible Spectroscopy, X-ray diffraction, and Scanning Electron Microscopy. Our results showed a slight decrease in the optical band gap of the irradiated samples, which can be attributed to the quantum confinement effect caused by changes in the crystallite size. The diffractograms displayed diffraction peaks corresponding to the characteristic planes of the hexagonal wurtzite phase of ZnO, indicating that the films were polycrystalline with a preferential orientation along the c-axis. We also observed a reduction in the average crystallite size of the samples after ion irradiation. The morphological study showed that the average grain size increased and the shape changed from spherical in the pristine sample to flake-like after irradiation. Additionally, the samples irradiated with Ar+ ions exhibited a bimodal distribution in grain size, which is attributed to the defects and nucleation centers generated during the irradiation process.

Article activity feed