Toward Responsible AI in High-Stakes Domains: A Dataset for Building Static Analysis with LLMs in Structural Engineering

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Modern engineering increasingly operates within socio-technical networks, such as the interdependence of energy grids, transport systems, and building codes, where decisions must be reliable and transparent. Large language models (LLMs) such as GPT promise efficiency by interpreting domain-specific queries and generating outputs, yet their predictive nature can introduce biases or fabricated values—risks that are unacceptable in structural engineering, where safety and compliance are paramount. This work presents a dataset that embeds generative AI into validated computational workflows through the Model Context Protocol (MCP). MCP enables API-based integration between ChatGPT (GPT-4o) and numerical solvers by converting natural-language prompts into structured solver commands. This creates context-aware exchanges—for example, transforming a query on seismic drift limits into an OpenSees analysis—whose results are benchmarked against manually generated ETABS models. This architecture ensures traceability, reproducibility, and alignment with seismic design standards. The dataset contains prompts, GPT outputs, solver-based analyses, and comparative error metrics for four reinforced concrete frame models designed under Ecuadorian (NEC-15) and U.S. (ASCE 7-22) codes. The end-to-end runtime for these scenarios, including LLM prompting, MCP orchestration, and solver execution, ranged between 6 and 12 s, demonstrating feasibility for design and verification workflows. Beyond providing records, the dataset establishes a reproducible methodology for integrating LLMs into engineering practice, with three goals: enabling independent verification, fostering collaboration across AI and civil engineering, and setting benchmarks for responsible AI use in high-stakes domains.

Article activity feed