Fluorescence-Based <em>In Vitro</em> Detection of Wound-Associated Bacteria with a Handheld Imaging System
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Chronic and acute wounds are often colonized by polymicrobial biofilms, delaying healing and complicating treatment. Rapid, non-invasive detection of pathogenic bacteria is therefore crucial for timely and targeted therapy. In this study, 20 clinically relevant, porphyrin-producing bacterial species were cultured on δ-aminolevulinic acid (ALA)-supplemented agar and analyzed using the handheld cureVision imaging system under 405 nm excitation. Both Red-Green-Blue (RGB) and fluorescence images were acquired under ambient daylight conditions, and fluorescence signals were quantified by grayscale intensity analysis. All tested species exhibited measurable red porphyrin-associated fluorescence, with the highest intensities observed in Klebsiella pneumoniae, Klebsiella oxytoca, Veillonella parvula, and Alcaligenes faecalis. A standardized detectability threshold of 0.25, derived from negative controls, enabled semi-quantitative comparison across species. Statistical analysis confirmed that fluorescence intensities of all bacterial samples were significantly elevated compared to the control (Wilcoxon signed-rank test and sign test, both p < 0.001; median intensity = 0.835, IQR: 0.63–0.975). These results demonstrate that the cureVision system enables robust and reliable detection of porphyrin-producing wound bacteria, supporting its potential as a rapid, non-invasive diagnostic method for assessing wound colonization and guiding targeted clinical interventions.