Spatiotemporal Water Quality Assessment in Spatially Heterogeneous Horseshoe Lake, Madison County, Illinois Using Satellite Remote Sensing and Statistical Analysis (2020–2024)

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Inland lakes across the United States are increasingly impacted by nutrient pollution, sedimentation, and algal blooms, with significant ecological and economic consequences. While satellite-based monitoring has advanced our ability to assess water quality at scale, many lakes remain analytically underserved due to their spatial heterogeneity and the multivariate nature of pollution dynamics. This study presents an integrated framework for detecting spatiotemporal pollution patterns using satellite remote sensing, trend segmentation, hierarchical clustering and dimensionality reduction. Taking Horseshoe Lake (Illinois) as a case study, we analyzed Sentinel-2 imagery from 2020–2024 to derive chlorophyll-a (NDCI), turbidity (NDTI), and total phosphorus (TP) across five hydrologically distinct zones. Breakpoint detection and modified Mann-Kendall tests revealed both abrupt and seasonal trend shifts, while correlation and hierarchical clustering uncovered inter-zone relationships. To identify lake-wide pollution windows, we applied Kernel PCA to generate a composite pollution index, aligned with the count of increasing trend segments. Two peak pollution periods, late 2022 and late 2023, were identified, with Regions 1 and 5 consistently showing high values across all indicators. Spatial maps linked these hotspots to urban runoff and legacy impacts. The framework captures both acute and chronic stress zones and enables targeted, seasonal diagnostics. The approach demonstrates a scalable and transferable method for pollution monitoring in morphologically complex lakes and supports more targeted, region-specific water management strategies.

Article activity feed