AI and Machine Learning in Biology: From Genes to Proteins

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Artificial intelligence (AI) and machine learning (ML), especially deep learning, have profoundly transformed biology by enabling precise interpretation of complex genomic and proteomic data. This review presents a comprehensive overview of cutting-edge AI methodologies spanning from foundational neural networks to advanced transformer architectures and large language models (LLMs). These tools have revolutionized our ability to predict gene function, identify genetic variants, and accurately determine protein structures and interactions, exemplified by landmark milestones such as AlphaFold and DeepBind. We elaborate on the synergistic integration of genomics and protein structure prediction through AI, highlighting recent breakthroughs in generative models capable of designing novel proteins and genomic sequences at unprecedented scale and accuracy. Furthermore, the fusion of multi-omics data using graph neural networks and hybrid AI frameworks has provided nuanced insights into cellular heterogeneity and disease mechanisms, propelling personalized medicine and drug discovery. This review also discusses ongoing challenges including data quality, model interpretability, ethical concerns, and computational demands. By synthesizing current progress and emerging frontiers, we provide insights to guide researchers in harnessing AI’s transformative power across the biological spectrum from genes to functional proteins.

Article activity feed