Challenges in Polyglutamine Diseases: From Dysfunctional Neuronal Circuitries to Neuron-Specific CAG Repeat Instability

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington’s disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar muscular atrophy. In most patients, these diseases progress over decades to cause severe movement incoordination and neurodegeneration. Although their inherited genes with tandem-repeat elongations and the encoded polyQ-containing proteins have been extensively studied, the neuronal-type-specific pathologies and their long pre-symptomatic latency await further investigations. However, recent advances in detecting the single-nucleus transcriptome, alongside the length of tandem repeats in HD post-mortem brains, have enabled the identification of very high CAG repeat sizes that trigger transcriptional dysregulation and cell death in specific projection neurons. One challenge is to better understand the complexity of movement coordination circuits, including the basal ganglia and cerebellum neurons, which are most vulnerable to the high CAG expansion in each disease. Another challenge is to detect dynamic changes in CAG repeat length and their effects in vulnerable neurons at single-cell resolution. This will offer a platform for identifying pathological events in vulnerable long projection neurons and developing targeted therapies for all tandem-repeat expansions affecting the CNS projection neurons.

Article activity feed