Development of a Virtual Robotic System for Learning Spatial Vector Concepts in Junior High Schools
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study aims to address the challenges junior high school students often encounter when learning abstract spatial vector concepts. By developing and implementing a virtual robotic system, this research intends to improve students’ spatial reasoning, deepen their conceptual understanding, and increase engagement through an interactive, visual, and experiential learning environment that remedies the shortcomings of traditional teaching methods. The system was developed with the Unity Game Engine to deliver 3D visualization, interactive manipulation, and real-time feedback, thereby enhancing conceptual learning. In addition, the instructional design employed the ADDIE model (Analysis, Design, Development, Implementation, Evaluation) to enhance students’ understanding of spatial vector concepts. A quasi-experimental design was conducted involving 60 eighth-grade students divided evenly into experimental and control groups. Pre- and post-tests—including achievement assessments, learning attitude questionnaires, and cognitive load scales—were administered to evaluate learning outcomes. The main findings are as follows: (1) The experimental group demonstrated significantly higher learning achievement compared to the control group. (2) Both groups showed improvements in mathematics learning attitudes, with the experimental group exhibiting greater gains in practicality and confidence. (3) Although the experimental group experienced a slightly higher cognitive load, this difference was not statistically significant. (4) The experimental group reported high satisfaction with the system, especially in perceived usefulness. This study demonstrated that integrating virtual reality with the ADDIE model can substantially enhance learners’ conceptual understanding and motivation.