Homomorphic Encryption for Confidential Statistical Computation: Feasibility and Challenges
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Statistical confidentiality focuses on protecting data to preserve its analytical value while preventing identity exposure, ensuring privacy and security in any system handling sensitive information. Homomorphic encryption allows computations on encrypted data without revealing it to anyone other than an owner or an authorized collector. When combined with other techniques, homomorphic encryption offers an ideal solution for ensuring statistical confidentiality. TFHE (Fast Fully Homomorphic Encryption over the Torus) is a fully homomorphic encryption scheme that supports efficient homomorphic operations on Booleans and integers. Building on TFHE, Zama’s Concrete project offers an open-source compiler that translates high-level Python code (version 3.9 or higher) into secure homomorphic computations. This study examines the feasibility of the Concrete compiler to perform core statistical analyses on encrypted data. We implement traditional algorithms for core statistical measures including the mean, variance, and five-point summary on encrypted datasets. Additionally, we develop a bitonic sort implementation to support the five-point summary. All implementations are executed within the Concrete framework, leveraging its built-in optimizations. Their performance is systematically evaluated by measuring circuit complexity, programmable bootstrapping count (PBS), compilation time, and execution time. We compare these results to findings from previous studies wherever possible. The results show that the complexity of sorting and statistical computations on encrypted data with the Concrete implementation of TFHE increases rapidly, and the size and range of data that can be accommodated is small for most applications. Nevertheless, this work reinforces the theoretical promise of Fully Homomorphic Encryption (FHE) for statistical analysis and highlights a clear path forward: the development of optimized, FHE-compatible algorithms.