Trigger-Based PDCA Framework for Sustainable Grid Integration of Second-Life EV Batteries
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Second-life electric vehicle batteries (SLBs) represent a promising asset for enhancing grid flexibility and advancing circular economy objectives in the power sector. This paper proposes a conceptual trigger-based PDCA (Plan–Do–Check–Act) framework for the sustainable grid integration of SLBs, enabling adaptive operational control across diverse application scenarios. The framework combines lifecycle KPI monitoring, degradation and performance tracking, and economic feasibility assessment with trigger-driven dispatch logic. Technical, financial, and environmental indicators are systematically integrated into the four PDCA phases, providing a structured basis for adaptive management. To illustrate applicability, indicative KPI calculations are presented for three representative scenarios (HV Backup, RES Smoothing, and Frequency Regulation). These examples demonstrate how the framework supports scenario-based planning, performance evaluation, and decision-making under uncertainty. Compared with existing state-of-the-art approaches, which typically analyse technical or economic aspects in isolation, the proposed framework introduces a modular, multi-model architecture that aligns operational triggers with long-term sustainability goals. By embedding reuse-oriented strategies into an adaptive PDCA cycle, the study offers a clear and practical methodology for maximising SLB value while minimising degradation and environmental impacts. The framework provides a valuable reference framework for structured SLB deployment, supporting more resilient, cost-effective, and low-carbon energy systems.