Polyphosphazene-Mediated Assembly of TLR4 and TLR7/8 Agonists Enables a Potent Nano-Adjuvant Delivery System for Hepatitis C Virus Vaccine Antigens
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: The quest for well-defined immunoadjuvants remains one of the highest priorities for the successful development of effective vaccines. Combination adjuvants, which are designed to integrate both the ability to activate a variety of immune mechanisms and synergistically improve delivery of vaccine components, are well-positioned to address the unmet needs. The development of preventive vaccine against hepatitis C virus (HCV) – a major public health concern, is a particular instance in which choice of the immunoadjuvant is of utmost importance. Methods: We assembled a lipid A Toll-like receptor 4 (TLR4) agonist BECC438 and TLR7/8 agonist resiquimod (R848) on a polyphosphazene macromolecule (PCPP) to create a nanoscale immunoadjuvant-vaccine delivery system: PCPP-R+BECC438. This aqueous-based system was formulated with HCV sE2 antigen, and the resulting vaccine candidate was evaluated in vivo for the ability to induce immune responses. Results: Co-assembly of adjuvants resulted in a visually clear aqueous system of nanoscale dimensions, monomodal size distribution and entropy driven interactions between components. Intramuscular immunization of mice with HCV sE2 antigen formulated in polyphosphazene-based nano-system induced ten-fold higher IgG and IgG2a titers than the antigen adjuvanted with BECC438 alone. PCPP-R+BECC438 formulated HCV sE2 also produced statistically significant improvements in IgG2a/IgG1 ratio and more robust HCVpp neutralization ID50 titers than control formulations. Conclusions: Polyphosphazene-assembled adjuvant nano-system promotes in vivo immune responses of enhanced quantity and quality of antibodies with increased potency of HCV neutralization.