A Comparative Framework for Extended Classical Mechanics' Frequency-Governed Kinetic Energy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper presents a revised formulation of kinetic energy within Extended Classical Mechanics (ECM), interpreting it as a frequency-governed process arising from mass displacement transitions. ECM proposes that kinetic energy emerges from the redistribution of rest mass (Mᴍ) into a dynamic component (ΔMᴍ), structured by two distinct frequency domains: the de Broglie frequency governing translational motion and the Planck frequency reflecting intrinsic quantum excitation. The resulting kinetic energy relation, KEᴇᴄᴍ = (ΔMᴍᵈᴮ + ΔMᴍᴾ)c² = hf, yields the classical ½mv² limit under low-frequency conditions while providing explanatory power for quantum and high-energy phenomena. Applications to atomic transitions, thermionic emission, nuclear fission, and fusion show that observed energy release can be interpreted as frequency-driven mass redistribution rather than annihilation. ECM thus reframes kinetic energy as an emergent property of dual-frequency mass dynamics, offering a unified theoretical lens spanning classical, quantum, and nuclear regimes.

Article activity feed