An IoV-Based Real-Time Telemetry and Monitoring System for Electric Racing Vehicles: Design, Implementation, and Field Validation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The rapid development of Intelligent Connected Vehicles (ICVs) and the Internet of Vehicles (IoV) has paved the way for new real-time monitoring and control systems. However, most existing telemetry solutions remain limited by high costs, reliance on cellular networks, lack of modularity, and insufficient field validation in competitive scenarios. To address this gap, this study presents the design, implementation, and real-world validation of a low-cost telemetry platform for electric race vehicles. The system integrates an ESP32-based data acquisition unit, LoRaWAN long-range communication, and real-time visualization via Node-RED on a Raspberry Pi gateway. The platform supports multiple sensors (voltage, current, temperature, Global Positioning System (GPS), speed) and uses a FreeRTOS multi-core architecture for efficient task distribution and consistent data sampling. Field testing was conducted during Colombia’s 2024 National Electric Drive Vehicle Competition (CNVTE), under actual race conditions. The telemetry system achieved sensor accuracy exceeding 95%, stable LoRa transmission with low latency, and consistent performance throughout the competition. Notably, teams using the system reported up to 12% improvements in energy efficiency compared to baseline trials, confirming the system’s technical feasibility and operational impact under real race conditions. This work contributes to the advancement of IoV research by providing a modular, replicable, and cost-effective telemetry architecture, field-validated for use in high-performance electric vehicles. The architecture generalizes to urban e-mobility fleets for energy-aware routing, predictive maintenance, and safety monitoring.