Investigating Brain Activity of Children with Autism Spectrum Disorder During STEM-related Cognitive Tasks
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Children with Autism Spectrum Disorder (ASD) often experience cognitive difficulties that impact learning. This study explores the use of electroencephalogram data collected with the MUSE 2 headband during task-based cognitive sessions to under-stand how cognitive states in children with ASD change across three structured tasks: Shape Matching, Shape Sorting, and Number Matching. Following signal preprocessing using Independent Component Analysis (ICA), power across various frequency bands was extracted using the Welch method. These features were used to analyze cognitive states in children with ASD in comparison to typically developing (TD) peers. To capture dynamic changes in attention over time, Morlet wavelet transform was applied, revealing distinct brain signal patterns. Machine learning classifiers were then developed to accurately distinguish between ASD and TD groups using the EEG data. Models included Support Vector Machine, K-Nearest Neighbors, Random Forest, an Ensemble method, and a Neural Network. Among these, the Ensemble method achieved the highest accuracy at 0.92. Feature importance analysis was conducted to identify the most influential EEG features contributing to classification performance. Based on these findings, an ASD map was generated to visually highlight key EEG regions associated with ASD-related cognitive patterns. These findings highlight the potential of EEG-based models to capture ASD-specific neural and attentional patterns during learning, supporting their application in developing more personalized educational approaches.