Dihedral Corner Region Camouflage in Radar Vision by Super-Dispersion Encoded Surfaces
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Right-angle dihedral structures produce strong, highly correlated returns that dominate radar cross-section (RCS) and image signatures. Conventional absorbers or random coding metasurfaces often lose effectiveness across wide frequency bands and angles, and cannot adequately suppress the corner-induced hot spots. We propose a wideband super-dispersion encoded surface (SDES) conformally applied to dihedral facets. The approach co-designs input-admittance for absorption with a deterministic super-dispersion phase sequence to redistribute energy spectrally and angularly, thereby decorrelating the returns. We implement SDES on a thin composite panel and evaluate it on canonical dihedral and dihedral–cylindrical hybrid configurations. Unlike diffuse or random coding schemes, SDES enforces broadband, angle-stable dispersion with a deterministic sequence that specifically addresses corner singularity scattering. We also introduce perceptual-hashing as an imaging-domain metric to link RCS control with observable radar-image changes. From 12–18 GHz, SDES reduces the average monostatic RCS by 9.6 dB on a right-angle dihedral. In dihedral–cylindrical hybrids, SDES removes the corner hot spots and drives the radar-image similarity index down to 0.31, confirming substantial alteration of scattering signatures.