CD4+ T Cell Help Shapes Protective Humoral Immunity in Primary Dengue 2 Virus Infection: Implications for Rational Vaccine Design

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Understanding the immune mechanisms that differentiate protective from pathogenic responses during dengue virus (DENV) infection is critical for effective vaccine development. Objective: To investigate how CD4+ T cell depletion alters viral control and the humoral immune response during primary DENV2 infection in a non-human primate (NHP) model. Methods: Rhesus macaques were depleted of CD4+ T cells prior to DENV2 infection. Viral kinetics, B cell activation, antibody specificity, and functional outcomes were evaluated longitudinally, including cross-reactivity and antibody-dependent enhancement (ADE) potential. Results: CD4+ T cells were essential for early viral clearance and the generation of robust, type-specific neutralizing antibodies. In their absence, animals exhibited early polyclonal B cell activation, delayed isotype switching, and an expanded repertoire of cross-reactive antibodies to DENV and Zika virus (ZIKV), with diminished neutralizing capacity. CD4-depleted macaques also showed increased ADE potential, particularly against ZIKV, and elevated anti-NS1 IgG titers that persisted one-year post-infection. Conclusion: CD4+ T cells play a critical role in orchestrating effective, durable, and type-specific antibody responses during primary DENV infection. Their absence leads to delayed antibody maturation, greater cross-reactivity, and higher ADE potential. These findings emphasize the need for dengue and Zika vaccines to include CD4+ T cell epitopes that promote high-quality, type-specific antibody responses and minimize ADE risk.

Article activity feed