Few-Shot Community Detection in Graphs via Strong Triadic Closure and Prompt Learning
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Community detection is a fundamental task for understanding network structures, crucial for identifying groups of nodes with close connections. However, existing methods generally treat all connections in networks as equally important, overlooking the inherent inequality of connection strengths in social networks, and often require large amounts of labeled data. To address these challenges, we propose a few-shot community detection framework, Strong Triadic Closure Community Detection with Prompt (STC-CDP), which combines the Strong Triadic Closure (STC) principle, Graph Neural Networks, and prompt learning. The STC principle, derived from social network theory, states that if two nodes share strong connections with a third node, they are likely to be connected themselves. By incorporating STC constraints during the pre-training phase, STC-CDP can differentiate between strong and weak connections in networks, thereby more accurately capturing community structures. We design an innovative prompt learning mechanism that enables the model to extract key features from a small number of labeled communities and transfer them to the identification of unlabeled communities. Experiments on multiple real-world datasets demonstrate that STC-CDP significantly outperforms existing state-of-the-art methods under few-shot conditions, achieving higher F1 scores and Jaccard similarity particularly on Facebook, Amazon, and DBLP datasets. Our approach not only improves the precision of community detection but also provides new insights into understanding connection inequality in social networks.