Bio-Based Silica-Reinforced Chitosan/Collagen Thermogels: Synthesis, Structure, and Rheological Behavior

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Silica-reinforced chitosan/collagen hydrogels are useful for biomedical applications. In this study, thermosensitive chitosan/collagen hydrogels were prepared with different amounts of rice husk ash-derived silica (RHA-Si). Fourier-transform infrared (FTIR) spectroscopy was used to analyze the chemical structure. Results showed that adding RHA-Si did not change the main chemical groups but caused slight shifts, indicating physical interactions. Micro-Computed Tomography (Micro-CT) revealed that RHA-Si altered the shape and size of the pores in the hydrogel. The pore structure became more spherical at certain RHA-Si levels, but not consistently. Rheological tests showed that increasing RHA-Si made the hydrogel stiffer and reduced the gelation time. However, the hydrogel weakened under high strain due to broken physical bonds. Compression tests indicated that low RHA-Si (1% w/v) improved the hydrogel’s strength during small deformations. In contrast, the hydrogel was less resistant to compression at higher RHA-Si levels (2–3% w/v). In summary, adding RHA-Si can improve the structure and strength of chitosan/collagen hydrogels, but excessive RHA-Si may reduce flexibility. The RHA-Si content should be adjusted to match the intended application of the hydrogel.

Article activity feed