Temperature Trends and Seasonality in Neritic and Transitional Waters of the Southern Bay of Biscay from 1998 to 2023
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Temporal and spatial variations in water temperature were analyzed from 1998 to 2023 across two contrasting southeast Basque coast estuaries: the deeper, stratified estuary of Bilbao and the shallower, mixed estuary of Urdaibai. We assessed long-term trends, seasonality, intra- and inter-estuary differences, and links to hydro-meteorological drivers using time-series decomposition, clustering, cumulative sum, regression, and correlation analyses. The largest differences in interannual and seasonal patterns occurred between outer neritic and shallow transitional waters. Most water masses warmed overall, with increases until 2003–2006, followed by cooling until 2013–2015, and sharp warming in 2020–2023. The strongest trends (0.24–0.25 °C decade−1) occurred in middle-estuary waters, while inner above-halocline waters of the stratified estuary showed no trend or slight cooling. The strongest warming occurred in spring, particularly in the easternmost mixed estuary (0.49 °C decade−1), especially in May (0.88 °C decade−1). Seasonal minima and maxima occurred earlier in surface transitional waters than in neritic and deep transitional waters of the stratified system. Over time, temperature maxima advanced, minima were delayed, shortening the warming phase, and springs became warmer, extending the warm season. Air temperature was the main driver of water temperature trends, while river flow modulated patterns at annual and seasonal scales, with negative correlations with temperature, mainly in spring.