Beyond Retrieval Competition: Asymmetric Effects of Retroactive and Proactive Interference in Associative Memory

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Although associative interference has traditionally been attributed to retrieval competition, emerging evidence suggests that interference may also arise from encoding-based representational processes. The present study examined whether retroactive interference (RI) and proactive interference (PI) can occur in the absence of explicit retrieval competition and whether they reflect distinct underlying mechanisms. Participants studied two lists of word–picture pairs in an AB/AC associative learning paradigm, followed by a non-competitive two-alternative forced-choice (2AFC) associative recognition test and a source memory task. Across both frequentist and Bayesian analyses, recognition accuracy revealed a significant RI effect—lower accuracy for earlier A-B pairs relative to non-overlapping controls—whereas PI manifested as longer reaction times (RTs) for later A-C pairs, despite comparable accuracy. Source judgments showed faster correct responses for overlapping than for non-overlapping pairs, suggesting that cue overlap facilitated more fluent retrieval rather than confusion. These findings indicate that interference can emerge independently of retrieval competition and that RI and PI are supported by dissociable mechanisms: RI reflects encoding-related reorganization that weakens earlier associations, whereas PI reflects increased retrieval effort following differentiation of overlapping traces. Together, the results support a process-interaction framework in which encoding-based reactivation and reorganization shape later retrieval dynamics, demonstrating that associative interference arises from the interplay between encoding and retrieval processes rather than retrieval competition alone.

Article activity feed