Comparison of PID and Adaptive Algorithms in Diesel Engine Speed Control
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study experimentally compares classical PID and three adaptive control strategies (including a novel adaptive control strategy developed by the authors) for stabilizing the crankshaft speed of a diesel engine (ADCR Euro 4). The tests were performed on a dynamometer with alternator-induced step loads. All tests were performed at a constant engine crankshaft speed using National Instruments instrumentation and custom LabVIEW-based software for real-time monitoring. Metrics included response time (RT), overshoot (OV), and steady-state error (SSE), each based on ten repetitions with reported standard deviations. Results show that the competitive adaptive algorithm reduced RT by ~20%, OV by ~15%, and SSE by ~10% compared to PID. These results confirm that adaptive control, especially the competitive strategy, provides high precision and fast disturbance rejection, bridging the gap between simulation-based studies and industrial diesel engine applications. These results highlight the potential of adaptive control in applications such as air–fuel ratio control, turbocharger pressure control, knock detection, and fuel optimization.