Baseline Findings from Dual-Phase Amyloid PET Study in Newly Diagnosed Multiple Sclerosis: Exploring Its Potential as a Biomarker of Myelination and Neurodegeneration

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Amyloid positron emission tomography (PET) has been proposed as a tool to monitor myelination in multiple sclerosis (MS). We present baseline results from an ongoing prospective study, which is the first to include both early and standard phases of amyloid PET in patients with newly diagnosed MS. Methods: The prospective study includes patients with newly diagnosed MS (January 2023–February 2024). Clinical evaluation includes neurological disability (EDSS) and neuropsychological assessment. Brain MRI, early [18F]florbetaben (FBB) PET (eFBB; 0–5, 0–10 min post-injection), and standard FBB PET (sFBB; 90 min post-injection) were acquired. Normal-appearing white matter (NAWM) and damaged white matter (DWM) in MRI were segmented and co-registered with PET images. Results are presented as standardized uptake values (SUV), with the ratio using cerebellum as the reference region (SUVR) and the percentage of change between the DWM and NAWM. Results: Twenty patients were included (35.05 ± 10.72 years; 75% women). Both eFBB and sFBB acquisitions showed significantly lower SUVRmax and SUVRmean, and higher SUVRmin in the DWM compared to NAWM (p < 0.001) in all patients. SUV parameters in both DWM and NAWM from eFBB and sFBB PET correlated with the number of relapses and EDSS (r = −0.454 and r = −0.446, respectively; p < 0.05). Additionally, SUVR values in the DWM during eFBB correlated with cognitive impairment (SDMT; r = −0.516, p < 0.01), fatigue (MFIS-5; r = −0.450, p < 0.05), and quality of life (EQ-5D; r = −0.490, p < 0.05). Conclusions: Quantitative analysis of dual-phase FBB PET demonstrates differential uptake between DWM and NAWM, which is probably associated with demyelination and neurodegeneration. These preliminary findings suggest that amyloid PET may have predictive value for disease activity and progression, supporting its potential as a biomarker in MS. Follow-up data from this study are needed to support the baseline results.

Article activity feed