Compressing and Decompressing Activities in Multi-Project Scheduling Under Uncertainty and Resource Flexibility
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In multi-project environments characterized by resource constraints and high uncertainty, traditional scheduling approaches often fail to respond effectively to dynamic project conditions. Fixed activity durations and rigid resource allocations limit adaptability, leading to inefficiencies and delays. To address this, the paper proposes a novel heuristic-based scheduling method that compresses and decompresses activity durations dynamically within the context of multi-project scheduling under uncertainty and resource flexibility—while preserving resource and precedence feasibility. The technique integrates Critical Path Method (CPM) calculations with heuristic rules to identify candidate activities whose durations can be reduced or extended based on slack availability and resource effort profiles. The objective is to enhance scheduling flexibility, improve resource utilization, and better align project execution with organizational priorities and sustainability goals. Validated through a case study at an automotive company in Portugal, the method demonstrates its practical effectiveness in recalibrating schedules and balancing resource loads. This contribution offers a timely and necessary innovation for companies aiming to enhance responsiveness and competitiveness in increasingly complex project landscapes. It provides an actionable framework for dynamic schedule adjustment in multi-project environments, helping companies to respond more effectively to uncertainty and resource fluctuations. Importantly, the proposed approach also supports sustainability objectives in new product development and supply chain operations. For practitioners, the method offers a responsive and sustainable planning tool that supports real-time adjustments in project portfolios, enhancing resource visibility and execution resilience. For researchers, the study contributes a reproducible, Python-based implementation grounded in Design Science Research (DSR), addressing gaps in stochastic multi-project scheduling and sustainability-aware planning.