Improving Benign and Malignant Classification in Mammography with ROI-Aware Deep Learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Deep learning has achieved widespread adoption for medical image diagnosis, with extensive research dedicated to mammographic image analysis for breast cancer screening. This study investigates the hypothesis that incorporating region-of-interest (ROI) mask information for individual mammographic images during deep learning can improve the accuracy of benign/malignant diagnoses. We used Swin Transformer and ConvNeXtV2 deep learning models to evaluate their performance on the public VinDr and CDD-CESM datasets. Our approach involved stratifying mammographic images based on the presence or absence of ROI masks, performing independent training and prediction for each subgroup, and subsequently merging the results. Baseline prediction metrics (sensitivity, specificity, F-score, and accuracy) without ROI-based separation were the following: VinDr/Swin Transformer (0.00, 1.00, 0.00, 0.85), VinDr/ConvNeXtV2 (0.00, 1.00, 0.00, 0.85), CDD-CESM/Swin Transformer (0.29, 0.68, 0.41, 0.48), and CDD-CESM/ConvNeXtV2 (0.65, 0.65, 0.65, 0.65). Subsequent analysis with ROI-based separation demonstrated marked improvements in these metrics: VinDr/Swin Transformer (0.93, 0.87, 0.90, 0.87), VinDr/ConvNeXtV2 (0.90, 0.86, 0.88, 0.87), CDD-CESM/Swin Transformer (0.65, 0.65, 0.65, 0.65), and CDD-CESM/ConvNeXtV2 (0.74, 0.61, 0.67, 0.68). These findings provide compelling evidence validating our hypothesis and affirming the utility of considering ROI mask information for enhanced diagnostic accuracy in mammography.

Article activity feed