Adaptive Response to Changes in Environmental Salinity of Lipid Metabolism in the Model Fish <i>Fundulus heteroclitus</i><i></i>
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Environmental salinity is a critical factor influencing the physiological and metabolic processes of teleosts. Despite its importance, the molecular mechanisms underlying these responses, particularly those involving specific signaling pathways and gene expression regulation, remain poorly understood. To elucidate the role of lipid metabolism in osmotic regulation, the present study investigated the effects of varying salinity levels (2, 20, 40, and 60 ppt) on growth performance and metabolic status, including the biosynthesis of long-chain (LC-FA) and very long-chain fatty acids (VLC-FA) in neural tissues (brain and eyes), of the euryhaline fish Fundulus heteroclitus over a 62-day period. The findings revealed multiple physiological adaptations to salinity variation, encompassing both molecular and metabolic responses. Salinity had a significant impact on growth performance, with fish exposed to the highest salinity level (60 ppt) exhibiting reduced growth. At this salinity, plasma levels of lipid-related metabolites, i.e., triglycerides and cholesterol, were decreased, whereas both osmolality and cortisol levels increased. Hepatic glucose and lactate levels increased with rising salinity, while glucose and triglyceride concentrations in muscle tissue declined. Additionally, intestinal lipase activity was significantly higher at 60 ppt. Althought no significant differences were observed in the total unsaturated fatty acid (UFA) content of both tissues, in the brain significant differences were detected in the levels of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-3, 20:4n-6, and 20:5n-3, whereas in the eye differences were observed only for 16:1n-7 and 20:5n-3. Gene expression analysis revealed that salinity exerts a regulatory effect on the expression of fads2b and elovl4a in the eye, with up-regulation observed at 60 ppt. In contrast, no significant changes in the expression of fads or elovl genes were detected in the brain. These findings highlight the contribution of non-osmoregulatory organs, such as the brain and eyes, in the osmotic adaptation of teleosts. Collectively, the results suggest that lipid metabolism plays a key regulatory role in the adaptation of F. heteroclitus to salinity fluctuations.