Learning-Driven Intelligent Passivity Control Using Nonlinear State Observers for Induction Motors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper proposes a learning-driven passivity-based control (PBC) strategy for sensorless induction motors, combining a nonlinear adaptive observer with recurrent neural networks (RNNs) to improve robustness and estimation accuracy under dynamic conditions. The main novelty is the integration of neural learning into the passivity framework, enabling real-time compensation for un-modeled dynamics and parameter uncertainties with only one gain adjustment across a broad speed range. Lyapunov-based analysis guarantees the global stability of the closed-loop system. Experiments on a 1.1 kW induction motor confirm the approach's effectiveness over conventional observer-based and fuzzy-enhanced methods. Under torque reversal and flux variation, the proposed controller achieves a torque mean absolute error (MAE) of 0.18 Nm and flux MAE of 0.21 Wb, compared to 1.58 Nm and 0.85 Wb with classical PBC. The peak torque deviation drops from 42.52% to 30.85% of nominal, torque symmetric mean absolute percentage error (SMAPE) improves by 7.6%, and settling time is reduced to 985 ms versus 1120 ms. These results validate the controller's precision, adaptability, and robustness in real-world sensorless motor control.

Article activity feed