Dairy DigiD: An Edge-Cloud Framework for Real-Time Cattle Biometrics and Health Classification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Digital livestock farming faces a critical deployment challenge: bridging the gap between cutting-edge AI algorithms and practical implementation in resource-constrained agricultural environments. While deep learning models demonstrate exceptional accuracy in laboratory settings, their translation to operational farm systems remains limited by computational constraints, connectivity issues, and user accessibility barriers. Dairy DigiD addresses these challenges through a novel edge-cloud AI framework integrating YOLOv11 object detection with DenseNet121 physiological classification for cattle monitoring. The system employs YOLOv11-nano architecture optimized through INT8 quantization (achieving 73% model compression with <1% accuracy degradation) and TensorRT acceleration, enabling 24 FPS real-time inference on NVIDIA Jetson edge devices while maintaining 94.2% classification accuracy. Our key innovation lies in intelligent confidence-based offloading: routine detections execute locally at the edge, while ambiguous cases trigger cloud processing for enhanced accuracy. An entropy-based active learning pipeline using Roboflow reduces the annotation overhead by 65% while preserving 97% of the model performance. The Gradio interface democratizes system access, reducing technician training requirements by 84%. Comprehensive validation across ten commercial dairy farms in Atlantic Canada demonstrates robust performance under diverse environmental conditions (seasonal, lighting, weather variations). The framework achieves mAP@50 of 0.947 with balanced precision-recall across four physiological classes, while consuming 18% less energy than baseline implementations through attention-based optimization. Rather than proposing novel algorithms, this work contributes a systems-level integration methodology that transforms research-grade AI into deployable agricultural solutions. Our open-source framework provides a replicable blueprint for precision livestock farming adoption, addressing practical barriers that have historically limited AI deployment in agricultural settings.

Article activity feed