Biobased Polyamides: A Journey from the Biomass Towards Cutting Edge Materials

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Since the 1930s, polyamides (PAs) have become increasingly vital across industries like automotive, textiles, electronics, and packaging, owing to their exceptional properties. However, they also have notable limitations, including a tendency to absorb water, low dimensional stability, poor solubility, and the resulting processing challenges. From an environmental perspective, the reliance on fossil-based monomers for traditional PAs and the accumulation of post-consumer waste, due to their resistance to (bio)degradation, are key concerns. In recent decades, significant advancements have been made in synthesizing PAs from bio-based monomers, primarily sourced from inedible lignocellulosic materials. Some of these bio-based PAs exhibit properties comparable to their fossil-derived counterparts, with benefits like enhanced solubility, which simplifies processing. Moreover, certain bio-based variants have shown improved biodegradability, facilitating the potential recovery of monomers for the production of new virgin polymers and reducing waste accumulation. This review highlights the progress in developing PAs from commonly used bio-based sources, including lignin-derived aromatic compounds, terpenes, fatty acids, and furan derivatives, with a focus on the improvements made over their fossil-based analogs.

Article activity feed