Workload Prediction for Proactive Resource Allocation in Large-Scale Cloud-Edge Applications

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Accurate workload prediction is essential for proactive resource allocation in large-scale Content Delivery Networks (CDNs), where traffic patterns are highly dynamic and geographically distributed. This paper introduces a CDN-tailored prediction and autoscaling framework that integrates statistical and deep learning models within an adaptive feedback loop. The framework is evaluated using 18 months of real traffic traces from a production multi-tier CDN, capturing realistic workload seasonality, cache–tier interactions, and propagation delays. Unlike generic cloud-edge predictors, our design incorporates CDN-specific features and model-switching mechanisms to balance prediction accuracy with computational cost. Seasonal ARIMA (S-ARIMA), Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Online Sequential Extreme Learning Machine (OS-ELM) are combined to support both short-horizon scaling and longer-term capacity planning. The predictions drive a queue-based resource-estimation model, enabling proactive cache–server scaling with low rejection rates. Experimental results demonstrate that the framework maintains high accuracy while reducing computational overhead through adaptive model selection. The proposed approach offers a practical, production-tested solution for predictive autoscaling in CDNs and can be extended to other latency-sensitive edge-cloud services with hierarchical architectures.

Article activity feed